skip to main content


Search for: All records

Creators/Authors contains: "Kalia, Rajiv K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (Ag2S), which is defect-free, omni-directional, and preserving perfect crystallinity. Our first-principles molecular dynamics simulations elucidate the ductile deformation mechanism in monoclinic-Ag2S under six types of shear systems. Planer mass movement of sulfur atoms plays an important role for the remarkable structural recovery of sulfur-sublattice. This in turn arises from a distinctively high symmetry of the anion-sublattice in Ag2S, which is not seen in other brittle silver chalcogenides. Such mechanistic and lattice-symmetric understanding provides a guideline for designing even higher-performance ductile inorganic semiconductors.

     
    more » « less
  2. Optoelectronic properties of devices made of two-dimensional materials depend largely on the dielectric constant and thickness of a substrate. To systematically investigate the thickness dependence of dielectric constant from first principles, we have implemented a double-cell method based on a theoretical framework by Martyna and Tuckerman [J. Chem. Phys. 110, 2810 (1999)] and therewith developed a general and robust procedure to calculate dielectric constants of slab systems from electric displacement and electric field, which is free from material-specific adjustable parameters. We have applied the procedure to a prototypical substrate, Al 2 O 3 , thereby computing high-frequency and static dielectric constants of a finite slab as a function of the number of crystalline unit-cell layers. We find that two and four layers are sufficient for the high-frequency and static dielectric constants of (0001) Al 2 O 3 slabs to recover 90% of the respective bulk values computed by a Berry-phase method. This method allows one to estimate the thickness dependence of dielectric constants for various materials used in emerging two-dimensional nanophotonics, while providing an analytic formula that can be incorporated into photonics simulations. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)